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ABSTRACT

We report on the design and correctess of a mmemication facility for a disuibuted com.
puter system. The facility provides a variety of broadcast protocols, which w'e used to transmit
messages reliably to sets of destination procsses. These proocols attain high levels of con-
currency while respecting application-specic ordering nstraints. They also ensure that procsses
observe consistent orderings of events, including process failures and recoveries. A review of
several uses for the protocols in a large fault-tolerant program illustrates the simplification of
higher-level algorithms made possible by our approahd.
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1. Introduction

This paper presents a set of communication primitives for supporting distributed computa-

tions in an environment where failures could occur. We are primarily concerned with haltig

failures, whereby a process stops executing without performing any inrrect actions. Each distri-

buted computation is represented as a set of events operating on a process-state and a partial

order on those events, corresponding to the thread of control. The types of events considered

include local computations by a process, broadcasts from a process to a set of processes, broad-

casts subject to predetermined ordering constraints, process failures, and recoveries.

Our premise is that event orderings should be subsumed into the communication layer of a

distributed system. In addition, since increasing conawency generally improves performance in

distributed systems, we ask how much communication-level concurrency can be aciieved while still

respecting event ordering constraints specified by the computations. An important feature of our

approach is that it enables a process to make assumptions about the event orderings that will be

observed by other processes in the system. This simplifies higher-level code by making event ord-

erings more predictable, and permits distributed computations to be implemented with reduced

risk of inconsistent actions being taken.

An example will illustrate the class of problems that are addressed here. Consider a process

p that is updating a replicated data item maintained by a set of dat maagers. Assume that this

update is performed using a reliable broadcast: if any data manager receives the broadest and

remains operational, all data managers will receive it. If p fails, a data manager could observe

any of several outcomes:

1. The data manager receives the update and then detects the failure.
2. It detects the failure and receives the update later.
3. It detects the failure and the update is not delivered (anywhere).

It may be difficult for a data manager to distinguish cases 2 and 3. Moreover, if some data

managers experience the first outcome and others the second one, the system must still behave
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-correctly. One way to address problems such as these is for each process to run an agreement

1 - protocol to decide on what action to take after it deemt a failure [Skeen-a]. This approach could

*. be slow because it is synchronous, and expensive because each process has to run such a protocol.

Another possibility is to discard messages that are received by a process after it has learned that

the sender has failed. However, inconsistencies may arise if messages are discarded by one pro-

cess but retained by another one that learns of the failure later. A third alternative, representative

of the general approach of this paper, is to construct a broadcast protocol that orders messages

relative to failure and recovery events such that these problems do not arise. Using the primitives

we develop here, a data manager can perform an update immediately upon receiving the

*0 corresponding message, because it is guaranteed that all other data managers will receive the mes-

". sage. It can take a recovery action immediately after detecting a failure, because no other data

manager will observe an inconsistent ordering of events. The primitives also ensure that every

data manager experiences the same sequence of events; this makes programming a computation

i* that performs such distributed updates easier.

The remainder of the paper is structured as follows. Section 2 discusses the presumed

environment in more detail. Section 3 describes the conmmncation primitives, and section 4 gives

protocols to implement them in a local network. Finally, section 5 applies the primitives to a

- fault-tolerant system that we have implemented at Cornell.

2. System model

A distributed system is modelled as a collection of processes possessing local states and cora-

* municating by messages. Processes do not share memory or maintain synchronized docks. The

term failure denotes a halting failure: a process ceases execution without taking any (visible)

incorrect or malicious actions [Schlichting]. No information survives a failure (by fault-tolerance

we refer to continued operation in the presense of failures, not recovery from "stable" storage). If

*" the site at which a failed process was executing remains operational, we assume that the failure is

detected (e.g. by the operating system) and that any interested parties are notified. On the other

-2-

I *....t '



hand, if a sites crashes, all the process executing on it fail, and processes at other sites can only

detect this by timeouts. The communication system can also fail: it can lose and duplicate mes-

sages, or deliver them out of order. Our protocols block, but do not take erroneous actions, if the

system partitions into subgroups of sites within which communication remains possible but between

which it is degraded or impossible.

Qearly, failure detection by timeout cannot be more reliable than the underlying communi-

cation system: a series of message losses can always mimic a failure. Moreover, the order in

which failures are perceived to have occurred may vary from process to process. These observa-

tions lead us to adopt a log;cal approach to failure handling, rather than a physical one. That is,

instead of a process acting directly after it detects a failure, which could lead to inconsistent

actions, a protocol is run to reach agreement with other processes that a failure event has

occurred, and to order it with respect to other events. This is meaningful because we have the

freedom to pretend that events like message delivery took plac either before or after the failure,

provided that no evidence to the contrary survived it. The basic property of a logical failure is

that after a process learns of such an event or observes the relative ordering of such events, it will

never communicate with another process whose state is inconsistent with this information.

3. The conimnkadon primitve

This section first defines two broadcast primitives, BCAST and OBCAST, and de :ibes their

behavior in the absence of failures. Failures and recoveries are then included by treating them as

a third type of broadcast, GECAST. All the broadcast primitives are azomic, that is, a broadcast

made to a set of processes is either received& by all operational processes, or by none at all, even

in the presenc of failures. Each broadcast B has a unique identifier, which we denote as MD(B).

The process that initiates a broadcast B is denoted SENDER(B), while the set of processes to

which B is sent is denoted DES7S(B).

'Recepmca is understood to include the indIre otzervaion of a message. For eam#e, if pi o-eas p receives a
message m, corna icates vth process q, and then fails, the state of q may reflect the oents o m. To keep the sys-
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3.1. The BCAST primitive

Consider a set of processes that maintain copies of a replicated data structure that represents

a queue. If items are inserted into and removed from each copy of the queue in the same order,

no inconsistencies will arise among copies. The BCAST primitive is provided for applications such

as tis, where the order in which data are receved at a destination must be consistent with the

order at other destinations, even though this order is not determined in advance. A BCAST is

invoked as BCAST(msg, label, dests), where msg is the message to be broadcast, label is a string

of characters, and dests is the set of processes to which the message must be delivered. BCAST':

are atomic: every operational destination receives msg, or none does. In addition, if two BCAST"s

with the same label have destinations in common, they will be delivered in the same order at all

overlapping destinations. The replicated queue described above can thus be implemented by using

BCAST's to broadcast insert or delete instructions to the various copies, using a queue-id for the

BCAST label.

3.2. The OBCAST primitive

For some applications, it is not sufficient that broadcasts are received in the same order at

overlapping destinations - it is also necessary that this order be the same as some predetermined

one. On the other hand, a consistent delivery order for messages originating in unrelated senders

may be less important. As an example, consider a computation that first sets copies of a repli-

cated variable to zero and later increments the variable. Here, it is not enough for the two opera-

tions be carried out in the same order at all copies - the increment must always occur second.

However, if independent computations were to access such a replicated variable, some other

method would normally be used to synchronize the accesses, making it unlikely that the both

would broadcast updates concurrently. The ordered broadcast primitive, OBCAST(msg. olabel,

dess) is used to enforce a delivery ordering desired by a single sender process, but with minimal

synchronization. Here, olabel is a label that cam be compared with other oLrbefs using a system-

trn state consistent, unless process q also fails, m nst be delivered to all its desnatin.
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wide algorithm, to yield a partial order on OBCAS7"s. We write olabel1 4 olabel2 , if oabel1 and

olabel, are comparable, and olabel, is less than oiabel2. Note that we allow for olabels to be

incomparable, that is for neither okibelo I& olabe 2 nor olabeI2 4 olabel, to hold. We use

OLABEL(B) to represent the oabei of broadcast B, and for brevity write B 11,B' to mean

OLABEL(B) -6 OLABEL(B'). An application uses otabel's to indicate the order in which broad-

casts should be delivered.

What constraints do olabel's place on the order of broadcast deliveries? Some orderings

specified by olabeLy are trivially satisfied. For example, if two OBCA"S7s have no destinations in

common, there is no actual constraint on the order of message delivery, regardless of how their

labels may compare. On the other hand, some specifiable orderings are unenforceable. An

OBCAST with an olabel less than one that has already been delivered dearly cannot be delivered

in the desired order. This calls for a restriction on allowable olabels. Fortmnately, most applica-

tions require an order to be enforced between two broadcasts only if the outcome of one could

causally affect the other. The notion of potenial causafity in an asynchronous distributed system

in which information is exchanged only by transmitting messages is studied in [Lamport]. In such

a system, a broadcast B is said to be porentally causay related to a broadcast B' only if they were

sent by the same process and B' occzrred after B, or if B was delivered at SEN'DER(B') before B'

was sent (or there is a chain of such receivers and senders linking B to B'). We restrict labels on

OBCASTS to disallow OLABEL(B') from being less than that of OLABEL(B) if they have tha. same

sender and B' is sent after B, or if B was delivered at SENDER(B') before B' was sent3. This is

not a major restriction because such orderings cannot be enforced unless the system has knowledge

of which future broadcasts a broadcast must wait for. Note, however, that in general OBCAST

will not provide the sort of consistent delivery ordeings given by BCAST: it satisfies a weaker ord-

ering constraint.

,oe accurately, if a broadcast is labeled in this way, the OBCAST priitive does not guarantee tha this order
wiU be observed.
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A broadcast primitive could be designed that orders any two broadcasts that are potentially

causally related. This is stronger than necessary, however. Consider a broadcast B made by a

process p to update copies of a replicated variable x. Let this be followed by a broadcast B' by p

to update copies of y. Even though there is a potential causal relation between B and B' because

B' occurred after B, there may be no real causal relation between them. In such cases, there

would be no reason to order the delivery of B before that of B'. Unecessarily ordering such

broadcasts is inefficient because it limits the possible concurrency in the system. The OBCAST

primitive uses oLabels to identify which causal relationships are significant and should be observed.

Essentially, it orders broadcasts relative to each other if they are potentially causal and if the ola-

bel. indicate that the potential causal relationships are significam.

We now formally define the ordering properties of OBCAST's. Given -L- as above, let the

relation precedes between OBCAST's be the transitive closure of the following two relations:

A. B precedes B' if B -- B' and the same process p sends B before it sends B'.

B. B precedes B' if B -4 B' and B is delivered at SENDER(B') before B' is sent.

Then OBCAST's have the following properties. They are atomic, and if B precedes B', then B is

delivered before B' at any overlapping destination.

The OBCAST primitive may seem to be too weak because it cannot enforce orderings that

may be desired between broadcasts that are not potentially causal. Consider a process p that

instructs a set of devices, "place wine bottles under taps," and a process q that orders, "open

taps". Clearly, it is desirable that the first broadcast be delivered everywhere before the second.

However, in an asynchronous system in which there is no upper bound on message delivery times,

the only way this can be implemented without wasting a lot of wine is to require that the devices

send q a message when the wine bottles have indeed been placed under the tap. These messages

causally relate the broadcast from p to that from q, and OBCAST's can then be used to enforce

the desired ordering. In general there will be little or no occasion to order asynchronous broad-

casts that are not potentially causal. Thus the OBCAST is strong enough for most applications.



Note that the accuracy with which okzbei's represent the dependency between broadcasts

could limit concurrency: if B precedes B', OBCASr wil deliver B first even if the semantics of B

and B' are such that they are actually independent.

3.3. Broadcasb In the presence of faiure and recoverie

In fault-tolerant systems, it is frequently necessary for the members of a group of processes

to be able to monitor the status of one another. They can then take actions based on failures or

recoveries of group members. As an example, consider a fault-tolerant server that is implemented

using a group of processes as follows. A request for the service is broadcast to all the members of

the group. The operational process having the smallest ID responds to the request. For this

implementation to function correctly, it is necessary that all the members of the group have the

same view of which members are operational. Otherwise no member may respor-i (as may happen

if all operational members believe that a failed process with a smaller iM is still operational), or

more than one member may do so (if an operational member believes that a process with a

smaller ID has failed when it has not). Further, if there has been a change in the status (opera-

tional / failed) of a member, it is necessary for all the processes to agree on whether a request

should be handled before or after the change in status, so that they may consistently decide on

which process should respond to the request. Although these problems could be-addressed by run-

ning an agreement protocol each time a failure or recovery is suspected, and / or by executing a

consensus protocol before rasponding to any request, it would be expensive and complex to do so.

A simpler method, described below, is to provide a process group abstraction having the property

that changes in the group membership (including failures and recoveries) are ordered with respect

to ongoing broadcasts.

In our system, each process p is initially in a process group G containing only itself. A pro-

cess p can join or withdraw from any process group G using the primitive GBCAST(acton, p, G),

where action is either join or widdraw. Each member of a process group maintains a process

group view, giving the current membership of the group. Invoking GBCAST results in a message
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being broadcast to all the members of the group informing them of the action. Upon receipt, the

process group view of each member is updated accrdingly. GBCASTrs are atomic and are

ordered in the same way elative to all BCAST's and OBCAST's at the destinations. In particular,

it is not possible for a BCAST or an OBCAST to be received before a GBCAST by some of the

members of a process group and after the same GBCAST by other members. The consequence of

this is that a member of a process group can respond to any BCAST or OBCAST with the guaran-

tee that any other member will respond to it based on the same process group view, without need-

ing to carry out an agreement protocol to ensure this.

Failure decisions are ordered with respect to ongoing broadcasts by simulating a

GBCA.ST(p_has.jaied, p,G) from a failed process p to all the process groups G to which it

0'!onged (this is called a failure GBCAST). If the failure is an isolated one, the GBCAST can be

iSSL.eC -v a supervisory process at the site where the failure occurred. If a site crashes, then the

software har~Jing failure detection (Sec. 4.1) initiates GBCAST's for every process at the failed

site. Sites receivinr i failure GBCAST remove the failed process from their process group view, as

a r a withdraw. When a process recovers, it GBCASTs its intention to join process groups. Thus

"inures and recoveries appear ; simple changes in the membership of process groups. An addi-

uonal property is provided for failure GBCAST's: they are delivered aer any BCAST or OBCAST

from the failed process. Thus after a process has learned of the failure of another process, it is

guaranteed to receive no more messages from Luat process.

If the fault-tolerant server described above is implemented using a process group, each

member can independently decide whether or not to re ,pond to a request based on its process

S s-oup view. The ordering properties of GBCAST's ensure that inconsistencies do not arise. More-

ov -. ie all members observe the same sequence of view tramiins, members can react con-

sistently tl. ures and recoveries. The process group abstraction thus ,reatly simplifies the con-

struction of faut: _Tant software.
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3.4. Flush prmiive

In certain situations, a process needs to know that a message has been actually received at its

destinations before it can continue. For example, consider a process that broadcasts a checkpoint

to a set of backup processes. If it fails while the broadcast is still in progress, the broadcast might

not be delivered to any backup (cf. definition of awmiciuy), and the failure handling action would

not occur. One way to address this is for a sender to request acknowledgements from the destina-

tions, and to wait until the acknowledgements are received. Instead of having to do this explidtly

each time, a flush primitive is provided. A process calling flush is blocked until all its pending

OBCAST's have actually been delivered, and is then allowed to continue.

3.5. Group addressing

All of our protocols require that a sender explictly name the set of destination processes for

each broadcast. A problem arises if a sender wishes to broadcast to all the membern of a process

group. If the group grows after the broadcast is initiated but before it is delivered, any new

members would not receive it. A way to resolve this is for each process group member to number

its process group views sequentially. Any process can then cache (possibly out of date) process

group membership information and view numbers for groups with which it communicates. To

transmit a BCAST, OBCAST, or GBCAST to all members of a group G, the cached information

would be used to compute DESTS(B), and the view number included in the message. On delivc.y,

if a recipient finds that the process group view has changed, it rejects the message. Since all rec-

pients have the same view when they receive the message, they all reject it if any does so. A

rejected broadcast can then be retransmitted to an updated set of destinations, and the cache

updated.

Some care is needed when updating the cache, to ensure that the OBCAST delivery order is

o preserved. In particular, consider three OBCAST's A A, B -6 C, and assume that A and B have

been transmitted using incorrect destinations. If the cache is updated promptly after A is rejected,

C could be transmitted using the corrected destinations before B is rejected and retransmitted. It
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will now appear that the B and C are not causally ordered, and hence C might be delivered first.

This problem is avoided by invoking fush before ,angingt the contents of a cadce.

3.6. R lated work

The BCAST primitive described above is simila to atomic broadcast [Chang], where the

problem is to send messages one site to all other sites in a network, with the sam reception order

everywhere. Chang does not defin atomic broadcast on a process-process basis, nor are other

types of broadcast considered. An interesting comparison can be drawn between this work and

that reported in [Christian], where a class of atomic broadcast protocols are developed, under

varying assumptions about the environment. The atomidty property addressed in that paper is

essentially the same as in the BCAST protocol given here. HIowever, whereas our OBCAST proto-

col weakens the ordering property (we still call it atomic), in [Christian] a strong ordering con-

straint is taken as be part of the definition of atomicity (recall that OBCAST may not deliver mes-

sages from unrelated processes in consistent orders at overlapping destinations). In practice, we

have found OBCAST to be valuable when building a system that manages replicated data, because

it relaxes the degree of synchronization while still ensuring that processes that survive a failure are

left in consistent states. In addition, our use of GBCAST to maintain process groups is new,

although the idea of grouping processes together is not. For example, CIRCUS supports process

troupes, but in an environment subject to assumptions that simplify the broadcast ordering prob-

lem [Cooper]. Specifically, process executions are deterministic (this is not required in our work),

and if a troupe receives messages from independent sources, the message delivery order must be

the same at all members. The ADAPLEX system supports a protocol, exclude, which is used to

order replicated updates in a database system with respect to failure [Goodman], much like

GBCAST is ordered with respect to other broadcast types.

.10.
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defined below. The layer provides two primitives: send(m, det) for sending message m to site

dest, and statu(m), which returns senl if the destination has acknowledged receipt of the message

or if a failure protocol has been started for the destination site, as described below. Intuitively, a

message has been sent if the future behavior of the system will be conistent with the message

having already been delivered.

The intersite layer employs a windowed acknowledgemnt protocol for ordered, loss-less

site-to-site message transmission. To detect failures, each site sends a "hello" message to all other

sites periodically; if a hello message is not received from a site within a reasonable period, it is

assumed to have failed, triggering the dange of view protocol. If a site is slow to send messages,

it may therefore be forced to undergo recovery (the probability of error can be made small by

picking a large timeout interval or introducng a protocol phase to allow other sites to prevent exe-

cution of the failure algorithm). A site incarnation number is incremrented each time a site recov-

ems; henceforth, the term "site" always means "incarnation of a site." Messages from a failed

incarnation are discarded, and a you are dead message is returned to the sender. Messages

addressed to a different incarnation than the current one are discarded.

4.2. Vkw mazngement

The view management layer ensures that each site in the system has a consistent picture of

site failures and recoveries occurring in the system. Each site has a site view, which is the set of

sites it deems to be operational, with their respective incarnation numbers. A site view is changed

when other sites fail or recover. A site view sequence, denoted v0 , v,, ... is a sequence of site

views, reflecting these changes. The view management protocol described below ensures that each

operational site goes through the same sequence of site views. Later, the protocols take advan-

tage of this to recover from failures without running any special agreement protocols.

Each site maintains a copy of the site view sequence, initialized in some consistent way when

the system cold-starts. We assume that the sites in a view can be ordered uniquely aording to

the view in which they were first operational, with ties broken by site-id. The "oldest" site in this
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order is called the view mnwager, and is responsible for initiating the view management protocol

when it detects a site failure or recovery. If a site determines that all sites older than itself have

failed, it takes over as the new view manager. Note that the sequence of view managers is a

stable property: extensions to the view sequence extend the sequene of managers without dang-

ing the subsequence on which sites have already agreed.

The view management protocol is based on a two phase commit protocol. Let

V09 v., ... , v, be the current site view sequence.

1. On detecting failures or recoveries, the view manager computes a proposed view ectension

v., v v, (If no failures occur during the execution of the protocol, the length of

the extension is 1, that is, v,+1 contains all the danges to the current site view. Failures occr-

ring during the execution of the protocol may cause the site view sequence to be extended by

more than one view, as described below.) It ceases to accept messages from site-incations

not in v. and sends the proposed view extension to the sites in v,. v

2. On receiving a proposed view extension, a site first ceases to accept messages from site-

incarnations not in v,+,

a. If the site has not previously received a proposed extension, or the new one incudes all the

changes (failures and recoveries) recorded in the old one, the site saves the new proposed

extension. Then, it replies to the view manager with a positive ackbowledgement.

b. Otherwise, the site has previously received a proposed view extension recording events that

are not included in the new one. It replies with a negatve acktowledgement, giving the

events that were missing.

3. The view manager collects acknowledgements.

a. If all the acknowledgements were positive, it sends a commit message for the proposed

extension.

b.

-13.
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If additional failures or recoveries have been detected, or negative acknowledgements were

received, the view manager updates its proposed extension and re-executes from step 1.

If the view manager fails, a new site takes over as view manager, and proceeds as follows:

4. If this new view manager has an uncommitted view extension, the previous view manager may

have sent some commit messages before failing. It appends a new site view containing the

failure of the old view manager to its pending extension and starts the protocol from step 1.

5. If the new view manager has received a committed extension, and has no pending one, it must

assume that some sites did not receive the commit. It appends a new view to the most recently

committed extension and continues from step 1. Participants ignore a committed prefix of a

proposed extension.

To establish the correctness of the protocol, consider the cases that can arise:

1. If the view manager doesn't fail, all sites obtain the same committed view extensions.

2. If the view manager fails and any site has a committed view extension, than all sites have ack-

nowledged that extension. The new view manager will eventually commit the extension every-

where.

3. If the view manager fails after it has distributed a proposed extension to a subset of sites, and

that proposed extension is not known to the new view manager, then any site knowing the

extension will send a negative acknowledgement to the new coordinator when the protocol is

restarted, and the coordinator will then distribute it during an additional protocol phase.

The following issues arise because sites may detect failures and recoveries of other sites at

different times and in arbitrary order. First, the order in which view managers commit site views

becomes the order accepted by the system, even if individual sites may have detected failures and

recoveries in a different order. Second, a view manager may erroneously decide that a site has

failed (because it is slow to respond). In this case, all sites consider the site in question to have
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failed' , and respond to any message from it with a "you are dead" message. Such a site is said to

be killed, as it is forced to undergo recovery with a new incarnation number. Third, it is possible

for a site a to believe that a site b has failed, for b to believe that a has failed, and for eat of

them to consider themselves as the view manager. In this situation, one or both will be killed,

otherwise some site would have to acknowledge two contradictory vies from two different view

managers, which cannot happen.

Two final problems remain to be addressed. If it is desired that the system be able to

recover if all sites fail, a protocol in [Skeen-b] can be run to reconstruct the view sequence from

copies saved on non-volatile storage. Also, if network partitioning can occur, erroneous actions

can be prevented by requiring that sites cease to operate if number of operational sites in a view

drops below a quorum. c3

4.3. The protocols

This section gives implementations for BCAST, OBCAST, and GECAST, deferring garbage

• collection issues to Sec. 4.3. The broadcast protocols order messages addressed to a process as

necessary, and place them on the delivery queue for the process. A process removes messages

- from its delivery queue in FIFO order. The protocols use other queues in which they buffer mes-

sages before placing them on delivery queues. Figure 2 illustrates the relationship between the

various queues.

4.3.1. BCAST protocol

Our BCAST protocol is based on a two-phase protocol by [Skeen-c]. The protocol maintains

a set of priority queues for each process, one for each BCAST label, in which it buffers messages

. before plaing them on the delivery queue. We assume that priority values are integers, with a

process-ID appended as a suffix to disambiguate between priorities assigned by different

processes. Each message in the buffers is tagged deliverable or .deliverable. The protocol to

'This is true unless the network becms parrirovi, that is, a grup o sites ontinues to remain oeratioal. but
unable to ctmmicate with the oth' sites. Network parttioning is considered later.
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implement BCA.ST(msg, label, desu) is as follows:

1. The sender transmits msg to its desinations, using send.

2. Each recipient adds the message to the priority queue assooated with Label, tagging it as

undeliverable. It assigns this message a priority larger than the priority of any message that

was placed in the queue, with the process-id of the recipient as a suffix. It then informs the

sender of the priority it assigned to the message.

3. The sender collects responses from recipients that remain operational. It then computes the

maximum value of all the priorities it received, and sends this value back to the recpients.

4. The recipients change the priority of the message to the value they receive from the sender,

tag the message as deliverable, and resort their priority queues. They then transfer messages

from the priority queue to the delivery queue in order of inereasing priority, until the priority

queue becomes empty or the message with the lowest priority is undeliverable. In the latter

case, no more messages are transferred until the message at the head of the queue becomes

deliverable.

If a failure occurs, any site that has a message tagged undeliverable from a failed sender can

detect this by observing a change in view, and can take over as the new coordinator to complete

the protocol. It does so by interrogating participants about the status of the message. A partic-

pant being interrogated either has never received the message, or responds with the priority and

tag. The new coordinator collects responses. If any process had marked the message deliverable,

the new coordinator distributes the corresponding priority to the other processes (step 3). Other-

wise, it resumes from step 1. Note that this scheme requires that each process retain information

about messages even after they are placed on the delivery queue; garbage collection is discussed in

Sec. 4.4.

Correctm. The protocol is atomic because before any recipient tap a message as deliver-

able, all destinations must have received copies of it. If a failure occurs after that, a destination

that has a copy tagged undeliverable will complete the protocol. Thus if the message is delivered
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at any destination, it will be delivered at all of them.

We now show that every message is delivered in the same order at all overlapping destina-

tions. If the priorities of any two messages were assigned by the same process, they cannot be

equal. If they were assigned by different processes, the process-r that is suffixed can be used to

order them, should the priority values be equal. Tus every deliverable message has a wuque

priority assigned to it. Messages addressed to overlapping destinations are delivered everywhere

in this order. Note that it is not possible for the priority of an undeliverable message to be

changed to become less than that of one that has already been delivered. The final priority is the

maximum of all assigned priorities; thus a message can only be moved later in a priority queue. c

4.3.2. OBCAST protocol

Our OBCAST protocol operates by ensuring that whenever a message B is sent from a pro-

cess p to a process q, a copy of every undelivered message B' that precedes B is also sent to q

with B, even if q is not a destination for B'. Thus a message may travel from process to process

before it reaches a destination, and multiple copies could be delivered by different routes (dupli-

cates are discarded). It follows that if a message B is delivered to a process p, then copies of all

messages addressed to p that precede B also arrive with B, or have arrived earlier. Messages

addressed to p can therefore be delivered in order. We first describe a simple but inefficient

OBCAST implementation, then show how its efficecy may be improved.

For each process p, there is a message buffer BUF,, which contains copies of messages sent

to and from p, as well as copies of messages that arrive at p en route to other proceases. Every

message B in BUF, has fields LD(B) and REM.DESr$(B) assocated with it. When p performs an

OBCAST(msg, olabel, desu), the message is placed in BUF,, and REI..DFE7S(B) is initialized to

dests. If p E REU..DESTS(B), a copy of the message is placed on the delivery queue for p, and p

is removed from REMDESTS(B). The process p cm then continue as if the message has already

been sent. Messages in BUF, are later scheduled for transmission. The decision as to when this

occurs can be based on advice from higher level algorithms (a message that requires a response
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would be transmitted as soon as possible to minimize waiting time), or on factors like the load on

the network. We assume only that all messages are scheduled for transmission within finite time.

For now, we also assume that a copy of any message placed in BUFP, remain in the buffer inde-

finitely.

A message B is transmitted from BUFp at site s to BUFq at site t as follows:

1. A transfer packet <B., B •,, > is first created including all messages B' in BUF, such that

u - B and REM.DESTS(B') is non-empty. The messages are sorted so that if Bi 4 B-, then

i<j.

2. The transfer packet is then transmitted from site s to site t using send.

3. When the packet has been sen, for each B, that it contained, q is deleted from

REMJDESTS(B) if it was listed there.

When process q receives a packet <B1, B2, ... >, the following is done for each i, in

increasing order of i:

4. If ID(B) is already assocated with a message in BUFq, then Bi is a duplicate and is discarded.

5. If q E REM.DESTS(B,), B, is placed on the delivery queue for q, q is removed from

REMJDESTS(B,), and a copy of B, is placed in BUF9.

6. Otherwise, B, is a message in transit to another process, and it is simply placed in BUFq.

Correctum. Any process q that receives a message adds a copy of it to BUF. Since all

messages in BUFq are scheduled for transmission within finite time, it follows that if any site has

received a message and does not fail, the message will eventually be delivered to all the destine-

tions that remain operational. Thus, the protocol is atomic.

To show that messages are delivered in the cor order, it suffices to show that for every

pair of messages B and B' delivered to q, if B precedes B', then B is placed on the delivery queue

before B'. We first prove that a copy of B will have been placed in BUFswvDOzr) when B' is first

placed there. Then any transfer packet that contaims B' will also contain B, and B will be ordered
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before B' in it. Thus when the first transfer packet containing B' arrives at q, a copy of B will

also be received. If B has not arrived in an earlier packet (and hence already placed on the

"* delivery queue), B will now be placed on the delivery queue before B'.

It follows from the definition of the relation precedes that if B precedes B', there is a

sequence of OBCASTSB=B 01B., , ', B =B' such that for all i, O<i!n, B,_ ., B,

SENDER(B 1) E REM.DESTS(B,_,), and B,-_ is received at SENDER(B,) before B, is sent. The

proof that a copy of B will have been placed in BUF...,!) when B' is first placed there is by

induction on n, the length of the shortest sequence satisfying the properties above. If n = 0,

B =B', and theresultfollows immediately. Assume that the hypothesis is valid for n= k. If

n= k + 1, consider the messages B and B. By the induction hypothesis, a copy of B wil have

been placed in BUFs.Jv( 3 ) when Bk is first placed there. Hence, any tramfer packet carrying a

copy of Bt  will also carry a copy of B. We know that Bk Ib B ",

SENDER(B,.I) ( REALDESTS(), and Bk is received at SENDER(B,+l) before Bk*I is sent.

Hence, a copy of B will arrive at SENDER(Bk.+.), and be placed in BUF,,,,J(D .) before B,. 1 is

delivered. This gives us the required result. 0

There are a number of ways in which the protocol above can be optimized:

* Although the protocol was stated in terms of packets sent from process to process, these pack-

ets could be combined to form larger inter-site packets. One inter-site packet could suffice to

transfer messages from processes at one site to all destination processes at another. The

packet reception rules would be amended to deliver all the messages in a packet that have local

destinations at once, and to correctly update the assoaated PBUF's.

* Rather than keeping a copy of a message in the buffer of each process at a site, the buffers

could contain only pointers to a common message pool for all processes at the same site.

* To avoid sending a copy of the same message from process p to proces q more than om, a

field SEFNTTO(B) can be assocated with ead message B and updated each me a packet con-
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taing the message is sent. The packet generation rules can then be further amended to

include B in a packet to a site only if it has not already been sent there.

The problem of deleting a message after it has readied all its destinations (REDESTS

becomes empty) is discussed in Section 4.4.

4.3.3. GBCAST protocol

A GBCAST(action, p, G) must be ordered relative to other GBCAS7"s to G, as well as rela-

tive to BCAST's and OBCAST's. In addition failure GBCAST's must be delivered after every mes-

sage from the failed process. These aspects are treated as separate parts in the description of the

protocol, then optimizations yielding a more efficient implementation are given.

The first part is carried out only for failure GBCAST's, and ensures that all messages from a

failed process are ordered before the GBCAST. Say that the process that failed is f.

1.1 The process p running the protocol sends a message to all processes in the system, informing

them of the start of the failure GBCA 5" for f.

1.2 A process q receiving this message schedules for transmission any message B in BUFq sent by

f that has a process in G in REVLDESTS(B). It then waits until the status of these messages

turns to sent.

1.3 If q belongs to G, q waits until all BCAST's from f have become deliverable. This will hap-

pen eventually because some process (perhaps q itself) will take over to complete the BCAST

protocol.

1.4 The process q then sends an acknowledgement to p. This part of the GBCAST ends when

acknowledgements have been received from all operational processes.

The second part of the protocol is based on the BCAST protocol, and orders GBCAST's to

the same group relative to one another, and GBCAST's relative to BCAST's.

2.1 The process p distributes the message action to the members of the proce group G.

=20.



2.2 A recipient q places copies of the message on all BCAS7 priority queues, tagging them

undeliverable. We assume that there is always a (possibly empty) queue for every possible

BCA7" label. It assigns it a priority greater than that of any message that has been placed on

any of the BCAST queues, and sends this priority value back to p (all copies receive the same

priority).

2.3 After collecting the responses, p sends the maximum of all the values it received to the

members of G, which change the priority accordingly and resort their queues. Unlike in the

BCAST protocol the messages are not tagged deliverable. Thus when a GBCAST message

reaches the head of a BCAST priority queue, further delivery of messages from that queue is

suspended.

2.3 When the GBCAST message reaches the head of all BCAf" queues, the next part is begun.

The third part orders GBCAS7"s relative to OBCAST's. We assume that the OBCAST proto-

col is modified to maintain a list lD/ia for each proces p, containing flYs for OBCAST messages

that have been placed on the delivery queue of p. For now, assume that the list includes the ID's

of allsuch messages. The goal of the protocol is for processes in G to agree on a list before of

OBCAST messages ordered before the GBCAST, and to deliver messages accordingly. The third

phase executes as follows.

3.1 The process p initiating the protocol contacts all members of G.

3.2 A participant q establishes a FIFO wait queue (unless one already exists). Until the GBCAST

protocol completes, messages that would have been placed on the delivery queue at q by the

OBCAST protocols are placed on this queue instead.

3.3 If any message B in IDUstq is in PBUFq and the remaining destinations of B include sites in

G, q must assume that those sites have not yet received a copy of B. Any such message is

scheduled for transmission to the destinations in REMDESTS(B) n G, and q waits until

their status changes to sent. It then sends MD/it to p.

.21.
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3.4 After collecting these messages, p merges all the lists it received, caling the result before. It

sends before to all participants. When a participant q receives the before list, any message

that was transmitted during Step 3.3 must have arrived, and is on the wait queue unless it has

already been delivered. Similarly, during Step 1.2, all OBCAS" messages from a failed pro.

cess were either placed on the wait queue or delivered.

Finally, messages are transferred in order to the delivery queue, and normal delivery

resumes:

4.1 Each participant q does the following. For each OBCAST B in its wait queue, if B sisted in

before, or if there is some B' in before and B - B', or if the GBCAST is for a failure of pro-

cess f and SENDER (B) =f, then B is added to before.

4.2 Any messages in the wait queue which are also listed in before are now transferred to the

delivery queue, preserving their relative order. The GBCAST message is then placed on the

delivery queue.

4.3 If there are no other GBCAST protocols in progress, p appends the contents of the wait

queue to the delivery queue and deletes the wait queue.

4.4 The GBCAST messages are removed from the heads BCAST queues, allowing BCAST mes-

sages to be delivered.

If a failure occurs, any particpant can restart the protocol from the beginning. As with

BCAST, participants reply using the deliverable priority of the GBCAST message if they know it;

all other steps of the protocol are idempotent and can be repeated without ill effect.

Correctw. GBCAST is atomic because no participant can deliver a GBCAST message until

all have received it, hence if any delivers it, all can restart the protocol.

GBCAST's to the same process group are ordered in the same way at every member because

each GBCAST is assigned a unique priority value (Step 2.3), and is delivered in this order.
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wait queue, and that B' is delivered during step 4.2 but B is not. Clearly,- B AB', since Step

4.1 would otherwise have listed B in before. Thus, the OBC.AS delivery constraints are

respected.

Observe that because of the flush performed during part 1, the protocol does not begin exe-

cuting until all messages from a failed process f have been delivered to their destinations. Hmce,

such messages are either on the delivery queue for the destinations or on a wait queue, if some

other GBCAST protocol was executing at the time. Step 4.1 then ensures that that the GBCAST is

delivered after any other message from f. This observation completes the proof. E

Optimization. The GBCAYT protocol can be optimized simply by merging steps together.

Moreover, the flush that is done in part 1 could be invoked directly from the view management

protocol - then, instead of doing this on a per-process basis, which would be extremely costly, it

would occur on a per-site basis, at relatively low cost. If this were done, a 2 round protocol would

result, not counting the cost of the flush, and performance should be acptable. A method for

controlling the length of IDtitt's is given below.

4.4. An associative store and dlstributed garbage colction ftu

We now define an associaive store medhanism, whidch is used by the above protocols to

manage the information associated with message id's. Each site s maintains a local store denoted

STOREJ. The contents of a store are tuples (id,alin), where id is a broadcast ID and ailn is a list

of zero or more attributes. A set of operations are defined on the store for each site (there is no

facility for accessing the store at a remote site). The operation ut..add0d) creates an empty list for

the designated ID, stlmert(id, ame, value) adds an attribute with name anene and value valis

to the list, t-find0d, anaum) looks up an attribute, and Ldet(, aam) deletes an attribute

(but not the ID). The special attribute DISPOSABLE is inserted when an entry will no longer be

referenced. In the BCAST and GBCAST protocols, an ID becomes DIOSABLE at a site running

(or completing) the protocol after it transmits commit messages. In the OBCAST protocol, an ID

becomes DWOSABLE at a site when the corresponding REM.DES7T field is empty.

.24/
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K We now give a method for deleting information assocated with a message-id after the ID is

marked as DISPOSABLE by some site. The method defines a delete action which is taken when an

ID is discarded; at the end of the section we give delete actions. Si copies of messages may be

*transmitted to a site while it is running the garbage collection protocol, and message IDYs are used

to avoid delivery of duplicate copies of messages, some care must be taken to ensure that a copies

of a message will not be received after its ID is deleted. Accrdingly, the algorithm employs an

additional field assocated with each message ID in the store, DONT_.END, which is initially null

and subsequently lists sites that have run the protocol.

1. Periodically, each site a makes a list of tuples, (ID, DONT.SEND) for DISPOSABLE Ilys. It

invokes the delete action for each listed ID, and then, to each site s, transmits a list {ID} con-

taining all the DISPOSABLE ID, satisfying -, s * DONVTSEWD.

* 2. On receiving a list <ID. ID. >, site b takes the following actions.

a. If ID is not already in STORE., it is added.

b. The REM.,DESTS field associated with the IM is made empty and it is marked as DISPOS-

ABLE. This ensures that b will not send additional copies of the message and that the ID

will eventually be deleted from STORE.

c. It adds a to the DONT..SEND field associated with this ID in STORE.

After processing the list, b sends an acknowledgement to a.

* 3. After receiving acknowledgements from all operational sites, a deletes the ID, the

DOVT..SEYD field, and and other information associated with the ID from STORE.. The

DONT..END field prevents a site from adding an ID to its store after deleting it, i.e. when

some other site executes the protocol to delete the ID from its own store.

BCAS1 and GBCAS7 have no special delete action - the priority information that they saved

* is discarded automatically when the protocol completes. The delete action for OBCA.7 is to

remove the message ID from the 0W of any procauses that have received a copy of it, and to
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delete the message itself from PBUF, for any processes p at the site. Thus, the length of an idlist

will be determined by the number of active broadcasts, which should be small.

Comere. This follows because no site deletes a message-id until all operational sites

have sent acknowledgements in step 2, but after step 2.c duplicates of a message will no longer be

sent to a site that has run the protocol. o

4.5. OBCAST flush lmlmutatiom

Flush is invoked in two ways, each having a slightly different implementation. When a pro-

cess invokes flush, the OBCAST algorithm is such that if any OBCAS" B is active, a copy of B will

be present in PBUFP for any process p that might take actions causally dependent on the delivery

of B. Hence, it suffices to schedule all messages in PBUFp for transmission, and then wait until

all have been sent to the destinations that remain operational.

If flush is invoked for a group address change, a stronger condition is needed, namely that

there is no active OBCAST that could still be rejected. This is satisfied by doing an OBCAST

requesting that group members return an acknowledgement. If this OBCAST is ordered after all

messages that have been sent previously, the acknowledgement will not be received until the mes-

sages in question have all been accepted.

5. Applcatiow

The communication subsystem proposed here is being implemented in the ISIS system, under

development at Cornell. ISIS is a distributed computing system that transforms non-distributed

abstract type specifications into fault-tolerant, distributed implementations, called reslienr objects

[Birman-al. Resilient objects achieve fault tolerance by replicating the code and data managed by

the object at more than one site. The resulting components synchronize their actions to provide

the effect of a single-site object. In the presence of failures, any ongoing operation at a failed

component is continued by an operational one. Also, a resilient object continues to accept and

process new operations as long as at least one component is operational. Finally, failed com-
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ponents recover automatically when the site at which they reside is restarted.

The initial version of ISIS used a simple communication layer that provided an atomic broad-

cast with no ordering properties. This was unsatisfactory for two reasons. Fiust, the implementa-

tion grew very complex because of the need to include, in various parts of the system, protocols to

preclude orderings that might lead to inconsistendes, especially in the presence of failures.

Second, the high degree of synchronization resulting from these protocols lowered system perfor-

mance. When reimplemented using a preliminary version of the primitives presented here, the

system became much simpler, and performance improved due to the highly concurrent nature of

the primitives. Below, we describe some areas in whiih these benefits were obtained.

* S.1. Updating replicsted date

When replicated data are updated, care must be taken to ensure that the updates occur in the

. same order at all copies. Otherwise, the copies can become inconsistent. In an environment

where no ordering properties are guaranteed on broadcasts, this is done by preceding an update to

* a local copy by a broadcast to the remote copies and waiting for confirmation from the remote

* copies that the update has been carried out, before allowing another local update to occur. This

* kind of synchronization means that the rate at which updates can occur is limited by the time it

takes for a message to travel a round trip, which can be unacceptably high. If OBCAST's are

*: instead used to instruct remote copies to perform updates, an update can be considered complete

when the iocal update is carried out. No further synchronization is required, because the proper.

ties of OBCAS'"s guarantee that all the copies receive the update, and do so in the required order.

The rate at which updates can now be performed is now the rate at which local updates can be

done, which is usually much higher than the previous case. At the same time, the protocol for

carrying out a replicated update is much simpler, as it consists of a single OBCAST. An efficient

way of labeling such OBCASTS is described in Sec. 5.4.

"27.

........................................--. ii-'-1i,-iii,.ii:,-lli -'- "'-.%'"-'i- "% " .-" :'-"- ""



5.2. Coordlator-cohort computadow

In ISIS, one of the components of a resilient object is designated as the coordinao for the

" execution of a particular cperation. The others, its cohoru, act as passive backups. If the coordi-

nator fails, a cohort takes over as and restarts the request (details are given in ([irman-b] and

[Birman-c]).

The process group abstraction facilitates theim lmn ion of oordnator-cohort computa-

tions. The components of a resilient object is placed in the same process group, and each request

to peeform an operation is OBCAST to all the components. Since each component has the same

process group view, they can independently decide on a unique coordinator for the request by

using the same algorithm, without running an agreement protocolP.

The GBCAST ordering properties prevent msistenes from arising when failures or

recoveries occur. After a failure, cohorts can pick a new coordinator consistently, and because all

have received the same messages from the previous coordinator, the object data is in a consistent

state at all components. When a component recovers, it uses GBCAST to rejoin the group, hence

all the operational components receive the GBCAST in the same state and any can transfer data to

reinitialize the recovering component.

5.3. Managing lod on replicated data

Lock-based concurrency control is the most common method for obtaining serializability

[Bernstein]. The usual locking method for replicated data is to obtain write locks on all copies and

* read locks on only one. This means that if the site at which a read lock is obtained were to fail,

all information about this read lock would be lost. Hen= if the recovery scheme requires that the

reads and writes be serialized in the same way after a failure as before, information about read

* locks must be replicated. In the ISIS recovery scheme, as in many that use a saved state for

recovery, it is necessary fnr the executions to be deterministic, and a d.ange in serialization order

'In ISIS this is done as foilows. If a request arrives from site s, the coodinatr is the site i in the Froces rop
- view mnimzing abft -sj. This tends to locate the cordinao for a cmputation at a same site as the site where the

request cmpnarted. which in ISIS imroves r ponse tm.
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would violate this. However, acquiring read locks at an sites would be inefficient. Instead, the

ordering properties of the broadcast primitives are used to obtain the same effect.

A read-lock is first obtained locally. Then, a read lock regiaxion message is OBCAST to

the other copies of the data item. The sender immediately continues execution, as if its read-lock

were already replicated, although the message may not actually have been delivered anywhere. If

the sender fails before any message leaves the site, the effect is as if the read never oarred

(recall that a failure destroys all information at a site). If, on the other hand, a site has received

any message m sent after the lock acquisition, the GBCAST protocol for the failure will ensure that

the read-lock registration message is delivered before the failure is detected by the process manag-

ing the lock. Thus, the read-lock behaves like a fully replicated one.

Unlike a read-lock, a write-lock must be explicitly granted by all components of an object.

However, a deadlock could occur if concurrent write-lock requests on the same data item are

granted in different orders by different components. Tiis problem can be avoided by using

, BCAST's for write lock acquisition requests. If the data item name is used as a BCA$" label, write

* lock requests on the same data item are ordered in the same way at all components, and deadlock

is avoided.

5.4. Performance Issue

A prototype communication layer similar to the one described here has been operation since

Jan. 1985 [Birman-c], and is being reimplemented to correspond exactly. Two performance mem-

ures are of interest. One, the response time for a typical request, measures the critical path

before a reply can be issued to a caller. We considered a fault-tolerant object implemented

ISIS and distributed to 3 sites (SUN workstations). A request that acquires a replicated write-lock,

updates a replicated data item, and then responds to its caller sends its reply after about .6

seconds; additional updates delay the response by .1 seconds each (the difference reflects the one.

time cost of concurrency control). When ISIS is run in a synchronous mode, verifying that each

update has actually completed before the coordinator undertakes any subsequent operations, such
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a computation requires 1.5 seconds, with additional updates requiring .5 seconds each. Moreover,

the performance of the synchrormis version degrades as the number of sites increases, while the

concurrent version gives the same performance regardless of the number of particpating sites.

Thus, concurrent communication primitives can have a substantial impact on performance.

A computation can remain active long after replying to the process that initiated it if a high

level of concurrency is achieved. To isolate the effect of concurrency on the above figures, the

total elapsed time between the issuing of the request and the true termination of the operation can

be measured. In ISIS, we find that a single asynchrmous update terminates after about 1 second,

with subsequent updates delaying termination by about .3 seconds each, and with linear degrada-

tion as the number of sites inceases.

The delay to termination would not be an issue unless computations at different sites com-

pete for a lock, which should be rare in ISIS. Thus, for ISIS and for many other applications, the

communication primitives described in this paper permit extremely good performance - almost as

good as for a non-distributed system performing the same operations - but with the ability to

tolerate failure as well.

6. Future Work

A weakness of the work described in this paper is its inability to permit continued operation

in die presense of partitioning failures, when two or more subgroups of operational sites form,

within which communication remains possible, but between which it is degraded or impossible.

We are now investigating the adaptation of methods from [ELAbbadi-a] [EAbbadi.b] to address

this issue. Also interesting is the possibility of integrating communication primitives with syn-

chronized docks, for use in shared memory systems and tightly coupled multi-processors.

7. Conclusiom

Our experience implementing a substantial fault-tolerant system lead to insights into the pro-

perties desired from a communication subsystem. The primitives described in this paper present a
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simple interface, achieve a high level of conowreney, and are applicable to software ranging from

distributed database systems to the fault-tolerant objects provided by ISIS. By respecting desired

event orderings, they introduce a desirable form of determnism into distributed computation. A

consequence is Enat high-level algorithms are greatly simplified, reducng the probability of error.

We believe that this is a very promising and practical approach to building large fault-tolerant dis-

tributed systems, and the only one leading to confidence in the correctness of the resulting

software.
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